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Pseudo-bound wavefunctions in the generator-coordinate 
method 

R G Lovasti and M A Nagarajant 
t Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England 
$ Institute of Nuclear Research, Debrecen, PO Box 51, H-4001, Hungary§ 

Received 14 January 1982 

Abstract. The method of using square-integrable trial functions for representing resonant 
and scattering states is adapted to the generator-coordinate description of two-cluster 
systems. Numerical tests in an exactly soluble two-particle model indicate that the method 
is suitable for locating a resonance and is surprisingly accurate in predicting scattering 
phase shifts. The method is shown to be closely related to the Kohn variational scattering 
formalism used in the framework of the generator-coordinate method. 

1. Introduction 

The possibility of describing a scattering state as a sum of bound states was first 
investigated by Temkin (1966) who applied it to the study of the excited states of the 
H- system. This approach was studied in great detail by Hazi and Taylor (1970), and 
since then the representation of unbound states by square-integrable functions has 
been widely used in atomic physics (Reinhardt 1979). In nuclear physics this idea 
was introduced in the description of stripping reactions to resonant states (Fortune et 
a1 1969, Cole eta1 1970, Coester and Schlessinger 1973). The use of square-integrable 
functions has proved to be a reasonable approximation for not-too-broad resonances 
(Schlessinger and Payne 1972, Barz et a1 1973). Its merit lies in its simplicity and 
applicability in other approaches and fields as well. For instance, in the framework 
of the coupled reaction channels method the use of the square-integrable representa- 
tion seems to be the only way of including unbound residual states (Lovas 1977). 
Square-integrable functions have also been used in structure calculations in order to 
discretise the single-particle continuum (Hird and Huang 1973, Csernai et a1 1978). 
Recently Filippov and Okhrimenko (1980) used a square-integrable basis in the 
resonating group method for a scattering calculation. The description of cluster states 
in the framework of the generator-coordinate method (GCM) (see e.g. Mihailovii: and 
Rosina 1973) also lends itself to treating unbound states as if they were bound, and 
it is common to apply it to resonances (see e.g. Mihailovii: and Poljgak 1978). 

But it is by no means self-evident that square-integrable functions can be used to 
represent positive-energy states if the model Hamiltonian allows particle emission. It 
is in this case that we call the square-integrable model wavefunctions pseudo-bound 
(PB) and their application to describing unbound states the pseudo-bound state method 
(PBSM). For them the familiar variational foundation of the ordinary bound-state 
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approximation methods does not give sufficient backing. For a potential model, 
however, Hazi and Taylor (1970) have shown that the PB states obtained by diagonalis- 
ing the Hamiltonian on a harmonic oscillator basis are closely associated with the 
exact scattering states of the system. 

Our aim is to explore the possibilities of the legitimate use of PB wavefunctions 
to describe unbound states in the framework of the GCM. We adapt Hazi and Taylor’s 
PB diagonalisation method to the GCM and test various recipes for computing the 
measurable quantities (resonance parameters and phase shifts). To this end we have 
made calculations in an exactly soluble model with GcM-like trial functions. The 
GcM-like basis is found to behave largely similarly to the harmonic oscillator basis, 
thus the conclusions are probably more general. On the other hand, the GCM basis 
turns out to have some very favourable special properties, and that indicates its 
usefulness in atomic physics as well. 

First of all, we shall briefly relate the PBSM to the bound-state variational methods 
and summarise the correspondence between the exact wavefunction of an unbound 
system and its PB approximant (§ 2). Then, in 0 3, we shall show the model calculations 
for resonant and scattering states. In § 4 we shall discuss the working mechanism of 
the PBSM and clarify its relation to its closest relatives, the Kohn-type variational 
formalism of the GCM and the HulthCn variational method. In 0 5 we shall outline 
how the PBSM can be implemented in actual GCM calculations. In 0 6 we summarise 
the results and give an appraisal of the method. 

2. Properties of the pseudo-bound states 

The PBSM involves the solution of the time-independent Schrodinger equation above 
the particle emission threshold (zero energy) in a square-integrable function space. 
Since in such a space this equation is only fulfilled at discrete energy eigenvalues, the 
PBSM consists in solving energy eigenvalue problems. These can be viewed as true 
bound-state problems for the Hamiltonian projected onto the subspace spanned by 
the PB basis. Consequently, the PB solution can be found using the bound-state 
variational principle (see e.g. Moiseiwitsch 1966, pp 163-8). 

According to this, the solution is provided by the stationary points of the energy 
functional 

a x 1  = (xlHlx)/(x/x). 
It follows from the properties of E [ x ]  that the approximate energy will be above the 
exact energy of the lowest lying state to which x is not orthogonal (Temkin 1966). 
This implies that, when there is no bound state of some particular strict quantum 
numbers, the approximate energy of a state of these quantum numbers cannot be 
negative. An approximate energy is guaranteed to be greater than (or equal to) the 
exact one if the lower lying eigenstates are projected out from the trial function. Such 
a projection may be possible by the introduction of states that approximate the 
eigenstates but is likely to be complicated in the general case. If x contains only 
linear variational parameters, the stationary points are obtained by diagonalising the 
Hamiltonian on the square-integrable basis that spans x :  x = X i  cixj. Addition of any 
new element to the basis, while producing a new eigenvalue higher than the original 
ones, lowers all the others provided H is Hermitian, whether the energy is negative 
or positive. But this monotonicity does not guarantee that the increase of the basis 
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will improve the description of any particular positive-energy state since the lower 
lying states are not projected out from x. Thus it is not obvious what a particular PB 
state represents. 

Hazi and Taylor (1970) have observed that in the harmonic oscillator basis a PB 
wavefunction closely follows the scattering solution belonging to the same energy up 
to some distance A, which can be arbitrarily chosen by choosing the basis size, and 
then tends to zero sharply. If A is in the asymptotic region, the PB wavefunction 
carries information on the scattering phase shift. In this sense a PB state represents 
the scattering state of the same energy. A change of the basis size shifts the spectrum 
of eigenenergies, and hence the new set of PB states corresponds to continuum states 
of shifted energies. The diagonalisation usually positions a PB state at each resonance 
of the system, and the energy of this state is extremely stable against changes in the 
basis. This state carries information not only on the phase shift but also on the 
resonance parameters. Therefore, it can be considered to be a state that approximates 
a particular continuum state as well as being a discrete state representing the resonance. 

The GCM is a linear variational method, thus all the general considerations put 
forward so far apply to it. But since its basis is very different from a harmonic oscillator 
one, it is important to see whether the above interpretation of the individual PB states 
is still valid. That is why we introduce the exactly solvable model and solve it 
approximately with a basis which bears all the essential features of the GCM. 

3. Model calculations 

3.1. Model for the generator-coordinate method 

In the GCM description of two interactive clusters A and B the trial wavefunction is 
of the form 

where @A and QB are the internal wavefunctions, r is the relative coordinate of A 
and B, b is an oscillator parameter, d is the intercluster antisymmetriser, f ( S )  is a 
variational function and PJM" is an angular momentum and parity projector. In 
practice the integral is discretised so that the wavefunction of the relative motion 
becomes a linear combination of shifted Gaussians centred around the discrete points 
Si : 

(Si 1 (1) q J M "  = 1 cfM7@JM" 

i 

with 

When qJM" is not a bound state, it has an oscillating tail in r, which requires the sum 
in (1) to be infinite with Si + CO as i + CO. Therefore, when applied to unbound states, 
(1) is truncated, and the asymptotic region is usually taken care of by some other 
means. A PB approximation is obtained by just truncating this sum without any further 
provision for the asymptotic region. 
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Since @A and (PB are frozen even in realistic calculations, the PB representation 
of the relative motion can be studied equally well by considering a two-body model. 
Furthermore, since this approximation concerns the asymptotic region, where the 
antisymmetrisation and the exact form of the interaction have little effect, it is justifiable 
to neglect the antisymmetrisation and to use a schematic interaction. We consider 
two spinless particles of the nucleon mass interacting in the relative s state via a 
potential consisting of a square well and a square barrier. In the examples to be 
shown the potential has been chosen to be 

r4:,Mev’ d c r, 

O d r  < 2 fm, 
V ( r ) =  20MeV, 2 f m d  r < d, d = 5 f m .  

Our basis is non-orthonormal and looks like 

To get the PB eigenfunctions 
N 

uE*(r) = ciui(r), 
i = l  

we solve the equation 

(SUEB JH -E,  luEB ) = 0, 

(4) 

which amounts to diagonalising H in the basis defined in (3). To be able to reach far 
away from the centre with a relatively convenient basis size, we have chosen the values 
of b and the steps AS = Si - Si-1 as large as possible while still reasonably covering 
the region of the potential: 

b = 0.65 fm, 

The lowest pole of the S-matrix is at (4.941 -0.480i) MeV. The PB eigenvalues 
E,&) belonging to node numbers n = 0, 1 , 2 , 3  and 4 as a function of N (or SN) are 
plotted in figure 1. As is expected from the considerations of 0 2, all the eigenvalues 
decrease monotonically as the basis is extended and apparently tend to zero energy 
as N is increased. (Note the logarithmic energy scale.) 

Si = (i -0.5) fm (i = 1,2,  . . . , N ;  N = 3,4,  . . . , 48). 

3.2. Resonances 

The resonance appears in the energy-versus-dimension ‘curves’ of figure 1 as inflexion 
points. The shoulders of the neighbouring curves could be joined together to form 
the ‘stable’ eigenvalue of Hazi and Taylor (1970). Our basis also bears out Hazi and 
Taylor’s other finding, namely, that the narrower the resonance the flatter the shoulder. 

We compare the exact Gamow wavefunction of the resonance with its PB rep- 
resentations belonging to different node numbers in figure 2. The two PB functions 
in each section of the figure correspond to energies that are more or less equally close 
to the exact energy. Of course, the approximate method cannot imitate the imaginary 
part and the exponentially increasing amplitude of the Gamow function, but it does 
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N 
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Figure 1. The eigenenergies belonging to node numbers n = 0, 1 , 2 , 3 , 4  of the problem, 
defined in the text, in the PB bases of dimension N or last discretisation point S, 

reproduce the ‘nuclear’ interior as well as the extrema and nodes of the tail of its real 
part up to the (n + 1)th node. The basis sizes N that generate the resonance function 
of n nodes are distinguished by the fact that SN + b s r,,+l, where r,+l is the position 
of the (n + 1)th node of the real part of the exact function. 

In this manner there are an infinite number of PB wavefunctions belonging to the 
same resonance, but they are not quite equivalent. The first one is the PB state of 
Huby (1970) and Cole et a1 (1970), and it is only this one that follows very closely 
the Gamow function if both are properly normalised to unity (Lovas 1974). As we 
shall see, the PB functions that have at least one extremum in the asymptotic region 
rather closely follow the exact scattering wavefunction as well. This suggests that they 
should rather be normalised asymptotically like the continuum wavefunctions and 
interpreted as approximate scattering functions. 

The ‘stabilisation method’ of Hazi and Taylor (1970) for finding a resonance 
consists in determining the E,,(SN) sets for several n and selecting out the stable value 
to be identified with the resonance energy E .  The resonance width can then be 
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Figure 2. The exact resonance wavefunction (real part: full curve; imaginary part: dotted 
curve) and its two approximants belonging to slightly higher (long broken curve) and 
lower (short broken curve) energies, respectively, repeated for different node numbers n. 
The approximate wavefunctions belong to the following basis sizes: N = 7 , 8  for n = 0; 
N = 1 6 , 1 7  for n = l ;  N = 2 5 , 2 6  for n = 2 ;  N = 3 4 , 3 5  for n = 3 ;  N = 4 3 , 4 4  for n = 4 .  
The phase of the exact function is chosen to make the function real at the first maximum 
of its modulus. The approximate functions are normalised so that they are equal to the 
exact function at this point. 
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calculated from any of the E,,(SN) curves by evaluating the slope of the curve at a 
point S, close to the inflexion point. Rewriting equation (21) of Hazi and Taylor 
(1970), we obtain 

where K is the wavenumber corresponding to the resonance energy according to 
E = I K  . The resonance energies and widths corresponding to the wavefunctions of 
figure 2 are given in table 1. The agreement with the exact values ( E  = 4.941 MeV, 
r = 0.960 MeV) is not too bad though the width is systematically overestimated, and 
should we not know the exact energy and wavefunction, it would be difficult to tell 
which of the energies is the best. Indeed, in nuclear physics we need to analyse 
broader resonances as well, and for these the shoulders of En(SN) are even less well 
defined. For the resonance produced by the model potential with d = 3.5 fm at 
E = E - i r / 2  = (2.040 - 2.171i) MeV, there are no shoulders at all. In general, the 
resonance energy cannot be determined much more accurately than within its width, 
and the search for a stable point is rather indirect. 

1 2  

Table 1. Approximate resonance energies E =E, (&)  and widths r 

n N E (MeV) r (MeV) 

7 
8 

16 
17 
25 
26 
34 
35 
43 
44 

0 

1 

2 

3 

4 

5.037 
4.878 
5.037 
4.901 
5.039 
4.918 
5.040 
4.931 
5.042 
4.942 

1.017 
1.056 
0.987 
1.026 
0.984 
1.024 
0.981 
1.022 
0.991 
1.035 

It is therefore worth-while to compare the PBSM with an approximate method that 
takes into account the decaying nature of the resonance explicitly. The simplest way 
to improve on the PBSM in this respect is to include in the basis an outgoing wave 
that is regularised at the origin and belongs to the resonance wavenumber k to be 
determined. For example, in our case the inclusion of 

with y = 0.2 fm-’ and N = 5 produces the resonance energy E = (4.978 - 0.481i) MeV, 
and the agreement with the exact wavefunction (both in the real and imaginary parts) 
is excellent. The method of calculating the complex eigenvalues and the corresponding 
wavefunction has been demonstrated by Giraud er al (1981). The inclusion of the 
non-normalisable wavefunction 6 ( r )  does not cause any problems because it is always 
used in conjunction with the operator (H-E,), where E, is the eigenvalue which 
defines the wavenumber k. The improvement gained by augmenting the basis with 
elements of larger Si is very small and rapidly decreases with growing N. The difference 
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between the approximate and exact values is thus almost entirely due to the incomplete- 
ness of the Gaussian basis inside the potential. 

This method is obviously more straightforward and accurate for describing a 
resonance than the PBSM. We remark, however, that the price we pay for the 
improvement is non-negligible. In the realistic case the computation of the matrix 
elements of 0 is a delicate and time consuming matter. This method is discussed in 
detail elsewhere (Giraud et a1 1981). 

3.3. Scattering 

Since one is used to regarding resonances as the analogues of bound states at positive 
energies, it is somewhat surprising that off-resonance scattering states appear to be 
equally well represented by a PB expansion. We test the idea for a quadruplet of PB 
states in the vicinity of 8.4MeV. The PB wavefunctions uEB of these states are 
compared with the exact scattering solutions at the same energies in figure 3. The 
agreement is excellent. In figure 4 a resonant PB wavefunction is compared with the 
scattering solution at the same energy. The agreement is actually less perfect here 
but still quite reasonable. 

Figure 3. Comparison of off -resonance PB wavefunctions (dotted curves) of energy 
EN = 8.4 MeV, where N is the dimension of the basis, with the exact scattering wavefunc- 
tions (full curves) at the same energies. The functions are normalised to be equal at their 
first maxima outside the potential. 
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Figure 4. Comparison of a PB wavefunction (dotted curve) with the exact scattering 
wavefunction (full curve) at the same energy EN in the resonlnce region. The functions 
are normalised to be equal at their first maxima outside the potential. 

The fact that U? (r) follows the scattering wavefunction well out in the asymptotic 
region offers a possibility of extracting from them the scattering phase shifts 6. This 
can be done, for instance, by assuming 

(d  s r << S N )  ( 5 )  PB 
U , (r) - sin(k,r + 13) 

where k, = ( 2 j ~ E , / h ~ ) " ~  with j~ being the reduced mass, and determining 6 by 
comparing this form with the u z B ( r )  calculated at some r = rl and rz (r1Z rz). The 
arbitrary choice of rl and r2 can be avoided by using the integral representation (Hazi 
and Taylor 1970) of the K-matrix element K =tan 6, which reads as 

Here 9 '~Jr )  and UEn(r) are arbitrary functions that satisfy YE,,(O) = 0, %E,(()) = 0 and 
behave like sin k,r and cos k,r, respectively, for r E (R, a), where d < R < SN. The 
second equality holds because, for r > R, (H - Efl)YE, (r) = 0 and (H -&)%E, (r) = 0. 
An alternative formula is 

R R 

~ R o  Ro 
(7) PB uEB(H-Efl)9~, d r / j  U, (H-E,)%E, dr K = -  

where Ro < R and the condition at the origin is replaced by .YE,(RO) = %E"(Ro) = 
.YLn(Ro) = %&,(Ro) = 0. (The prime stands for the r derivative.) An obvious choice 
for YE, and %E,, is 

with p = 10-30. 
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To derive (7), let us integrate the kinetic energy terms by parts twice. Denoting 
the Wronskian by W, we have 

R 

(9) 

and an analogous formula for the denominator. Equation (7) now follows from the 
assumption that (H -E,)uEB(r) = 0 for r < R, which implies that 

h2 PB R 
R 

PB 
U ,  ( H - E f l ) 9 ~ "  dr=-[w(yEn, U ,  )IR,+ [ ( H - J % ) u E ~ I ~ E ,  dr I,, 2fi I,, 

for r = R, (10) 

where - is the sign of proportionality, and from the identity W(f,f)=O. This 
derivation shows that formulae (6) and (7) are exact, and hence the K value they 
yield is independent of the choice of and WE", if u:"(r) is an exact solution up to 
r = R .  

Apart from pathological choices for rl and r2, the S extracted from equation ( 5 )  
agrees with the exact S within 0.005 for the non-resonant cases, and there is a 
systematic difference of about 0.07 in the resonance region. As table 2 shows, the 
use of (7) reduces even the slight staggering of the 6 obtained from ( 5 ) .  It was found 
that with p = 20 and R = SN the prediction of (7) hardly depends on R.  Its dependence 
on Ro, which is notable only for the case of the smallest basis, is due to the 'graininess' 
of the basis. For the non-resonant cases the accuracy of the estimates is very satisfac- 
tory, but in the resonance region the discrepancy survives. 

PB 
U ,, (r) -sin k,r + K cos k,r 

Table 2. Off- and on-resonance phase shifts calculated with N-dimensional bases using 
equation (7). 

S (radian) 

N E,,(MeV) Ro=O R o = 2 f m  R o = S f m  Exact 

10 8.466 
17 8.417 
24 8.398 
31 8.387 

5.1.57 
5.040 
4.931 

33+2'  5.147 

1.3405 
1.3429 
1.3437 
1.3442 
0.5978 
0.3850 
0.1729 
0.6086 

1.3435 
1.3432 
1.3438 
1.3442 
0.5978 
0.3850 
0.1728 
0.6086 

1.3416 
1.3424 
1.3435 
1.3440 
0.5972 
0.3845 
0.1725 
0.6081 

1.3429 
1.3454 
1.3464 
1.3469 
0.6699 
0.4654 
0.2537 
0.6547 

'This basis was obtained by augmenting the N = 3 3  basis with two elements centred 
around 1 and 2 fm, respectively. 
'i The last four rows corresponding to N = 33,34,35 and 33 + 2 refer to the resonance state. 

This discrepancy is explained by the fact that, due to the incompleteness of the 
basis in the region of the potential, the resonance energy is AE = 0.037 MeV too high. 
(This is known from the calculation with the outgoing wave, see 0 3.2.) According 
to the Breit-Wigner formula, this displacement shifts S by AS = -0.077, which is 
consistent with our finding. If this is the cause of the disagreement, it can, of course, 
be cured by increasing the density of the discretisation points. The inclusion of just 
two more points (at 1 and 2 fm) reduces' AE to 0.023 MeV, and that implies AS = 
-0.048. The last line of table 2 does show an agreement with this estimate. 
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4. Discussion 

4.1. Working mechanism of the pseudo-bound state method 

The way the PBSM works can be understood as follows. The choice of the basis defines 
an ‘expansion length’ A 3 S ,  + b beyond which the wavefunction must tend to zero 
rapidly. Thus the problem with a fixed basis closely resembles one in which the system 
is closed in a box of radius A. The diagonalisation then works like a bound-state 
variational method for the discrete energies at which the box boundary condition is 
satisfied. Some of the ‘normal modes’ generated in this way are plotted in figure 5 .  
It is obvious that at energies at which the exact scattering solution u(r)  has a node 
at A, for r S A the exact box solution uB(r) coincides with u(r) .  If U&)  is well 
approximated by the PB diagonalisation of expansion length A, the PB solution is a 
good approximation to the scattering problem as well. 

With the expansion length increased, the nodes go farther apart, thus the energies 
E,, belonging to a fixed node number n go to zero. In the asymptotic region the 
spacing of the nodes is uniform just as within the potential well if there are several 
nodes there. But the distance between the nodes at the junction of the internal and 
external regions strongly depends on the energy. Therefore, the E,(SN)  curves are 

Figure 5. The N = 20 (S, = 19.5 fm) P B  wavefunctions normalised to be equal at their 
first maxima. 
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not smooth. They are flatter at energies where a long neck of the wavefunction is 
building up and steeper otherwise. The scattering wavefunction has a long neck just 
at resonances, and that explains the shape of the E,,(SN) curves. 

Any inadequacy of the PB basis has a direct and an indirect effect: it makes the 
wavefunction (locally) inaccurate and displaces the PB energy. The former, if it occurs 
locally, can usually be eliminated from the extracted phase shift by suitably choosing 
Ro, R and p (cf formulae (7) and (8)). The latter, however, is persistent as it causes 
the phase shift extracted to correspond to another energy. 

There seem to be two critical regions where a PB basis may prove to be unsuitable: 
inside the potential and around r = A .  In the inner region it is the rapid oscillation 
of the wavefunction, while around A it is the box boundary condition that tries the 
pliability of the basis. The greater the number of elements, around a certain point, 
that differ significantly from the f ( r )  = 0 function, the more pliable is the basis there. 
While for an N-dimensional oscillator basis this characteristic grows with decreasing 
r up to N, for an equidistant GcM-like basis it is nearly uniform and usually low 
compared with N. It is therefore advisable, as we have seen, to choose the discretisation 
points to be more densely spaced in the interaction region. It is less important to 
make {Si} more dense around SN since the PB energy hardly depends on the accuracy 
of the PB function there. But the R and p values are to be chosen, as we did, to cut 
off the vicinity of A. 

Since the PBSM transforms the scattering problem to an energy eigenvalue problem, 
the phase shift at a given energy cannot be calculated directly. Such a method is 
practical if S(E)  is to be calculated for a range of energy. Then S(E) can be computed 
at any particular E by interpolation. If, however, we need the solution sharp at a 
certain energy, we can always find it by varying {Si} (e.g. just S N ) .  The S(E)  can be 
extracted with reasonable accuracy if the PB solution covers at least half a wavelength 
outside the potential. Further increase of the expansion length (in half wavelength 
quanta) does not yield a substantially more accurate S. 

The relationship between the single-channel PB and scattering solutions is so simple 
because any positive-energy solution of the radial Schrodinger equation describes an 
elastic scattering process. However, if there are several open channels, a solution 
obtained by fixing the expansion length in each channel will generally contain incoming 
and outgoing waves in each channel. Just as in any coupled-channels method, the 
solution with the appropriate asymptotics can be obtained by a linear combination of 
linearly independent solutions of the same energy. These can be generated by changing 
the expansion length in each channel. 

4.2. Variational background 

The PBSM can be considered not only as a bound state but also as a scattering variational 
method. This was already pointed out by Hazi and Taylor (1970) by producing the 
same formula (equation (6)) for the K-matrix as the expansion method of Harris 
(1967), which had been shown to give the same K-matrix as HulthCn’s variational 
method at the eigenenergy E,, (Nesbet 1968). In the GCM, however, it is not the 
HulthCn but the Kohn version of the Kohn-HulthCn variational approach 
(Moiseiwitsch 1966, pp 245-56) which has been adopted (Beck er a1 1975, Mihailovit 
er a1 1976, Mito and Kamimura 1976); therefore, it is desirable to relate the PBSM 
to this method as well. For simplicity, we use the notation of the model case, but its 
generalisation to the realistic elastic scattering case is trivial. 
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Following MihailoviC et al (1976), one can solve the scattering problem at any 
energy E by taking the trial function 

where ai and K are variational parameters and uj ( r )  are given in equation (3). 
Alternatively, the Hamiltonian may be pre-diagonalised in the subspace {u i (r ) } ,  to 
obtain {up,"(r)} of (4), and the scattering problem may then be attacked with the trial 
function of the type proposed by Harris (1967), 

with Pm and K being the variational parameters. Since the bases (11) and (12) span 
the same subspace, any variational principle must be satisfied by the same XE and 4 ~ .  

The Kohn variational principle states that, for functions $ € ( r )  that have the 
asymptotic form t,bE +sin kr +K cos kr (cf equation (lo)), the functional 

T[+E 1 = K - (2P/ h2 k )(+E lH - E I $E ) (13) 

is stationary at $E = wE, the exact solution of the scattering problem, against any 
variations of $E that obey the same boundary condition, and 

z [ U E ]  = K e x a c t .  

By integration by parts of the kinetic energy term in the right-hand side of (13), one 
can show that the condition &Y[wE] = 0 may be written as 

&?[w,] = -(2p/h2k)(8w~IH - E I o J E )  = 0. (14) 

If results from solving (14) on a truncated space, then T [ $ E ]  # K in general; T[$E] 

is then an improved approximation to the exact K-matrix. The Kohn method consists 
in solving (14) with a restricted trial function and calculating the corrected K-matrix, 
3[*€l. 

By substitution of (12) into WE,  equation (14) takes the form 
N 1 ( U  EB IH -El U LB)Pm = - ( ( U  EB IH -Ely€) + ( U  E" IH -El %E)K)  

m = l  

( n  = 1, , . . , N ) ,  

C (%E IH - E I PmB ) P m  = - ( ( @ E  IH - E I YE ) + ( %E IH - E 1 %E )K 1. 

(15) 

( 1 6) 
N 

m = l  

The same variational principle would produce similar equations for aj, but with up" 
replaced by up In either case, (15) can be formally solved for Pm (or ai),  and the 
solution substituted into (16) to produce K (MihailoviC et a1 1976), provided that 

Det{(u~BIH-EIu~B)}# 0, 

which is satisfied if E # E,. Since, however, the {U""} basis, assumed to be orthonor- 
mal, has the property 

( u : ~ I H - E ~ u P ~ ~ ) = ( E ~  -E)&,, (17) 
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at E =E,  equation (15) immediately reduces to (6), whereas for E # E ,  

P, = ( E  - E,)-'( U? I H  - E I Y ~  + K%€) (18) 

holds, which, substituted in (16), results in? 

In the limit E +E, this also reproduces (6). Because of the equivalence of bases (1 1) 
and (12), this also implies that (6) gives the limiting value of the K produced by (11) 
as well. Thus the PBSM is the common limiting case of the scattering formalisms based 
on (1 1) and (1 2) in the limit E -+ E,. 

The application of HulthCn's method on the same trial function & consists in 
determining Pm and K using equations (15)  and, instead of (16), the equation 

( ~ E I H - E I ~ J E )  = 0. (20) 
With (15) adopted, equations (17) and (18) are also implied. As a consequence of 
(17) and (18), ( U : ~ I H - E I ~ ~ ) = O  holds for all m ;  thus the condition (20) can be 
rewritten as 

which is to be solved for K. Letting E tend to E,, we again arrive at equation (6). 
Although at E =E,  the Kohn and HulthCn methods give the same K(E,) of 

equation (6), and the same P,(E,,) for m # n, as defined by equation (18), they produce 
different &,(E,,) and hence totally different wavefunctions. The quantity &(En) is 
defined by equation (18) as an energy limit, which depends on the energy behaviour 
of K = K ( E )  in the vicinity of E,. The Kohn value of Pn (E,) is obtained by inserting 
(19) in (18) and taking the limit E+E,: 
P,,(E,,)= - ( g E n ~ ~ - ~ , , ~ U f l  PB ) -1 ((%E./H-E,/YEn +KUL)G,) 

+ c (%En IH - ~n I U P >(E, - E m  ~m~ IH - ~n 19," + K %E, >) * 
m # n  

(22) 
This is a well defined finite number just as @,(En) and K(E,,). In the HulthCn method 
the energy dependence of K around E,, is determined by equation (21): 

(U RB IH - EIYE + K (E)%€) = [ (E)(E -E,)"*, 

where [ ( E )  varies slowly around E = E,. Inserting this in (18), we find that Pn diverges: 

Renormalising the HulthCn wavefunction by multiplying it by p i ' ,  we get uRB itself, 
which agrees with the conclusion of Hazi and Taylor (1970). 

But from among the two methods, it is only Kohn's that is guaranteed by the 
Kohn principle to produce a stationary K-matrix. Using (18), (22) and (6) for the 
coefficients in &,, one can easily confirm that q5En indeed satisfies the variational 

t In a different context, Beck et al (1975) also discussed this equation. 
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Thus, in general, K(E,) itself is not a stationary value of the functional 9. Nor is, of 
course, the HulthCn functional 

X[u] = -(U IH - E n  l y E n  >/(U IH - E n  I % n )  

stationary in general at the HulthCn wavefunction U:" : 

~ X [ U  I1 EB = -(SU IH - E, IyEn + K (E, )%En >/(U K" IH - E" I %Em 

This fact contradicts the statement of Hazi and Taylor (1970) on this matter. Both 
2?+ (2p/h2k)(&,1H and X are, however, stationary in the exceptional case 
when Y E ,  +K(E,)%En = WE,. In this trivial case equation (6)  gives the exact K-matrix 
independent of uEB, and thus both Y[ and 2? are constant functionals. In practical 
cases we do not know K(E,) beforehand; it is nevertheless useful to know that the 
closer WE, approaches by Y E ,  +K(E,)%En the more accurate K(E,) will be. Several 
of the conclusions of this section can be found in a discussion of the variational 
principle by Burke (1977). 

5. Application in realistic calculations 

In the preceding sections we have shown that the PBSM works well in a model imitating 
the GCM. Its applicability in realistic GCM calculations, however, depends largely upon 
how equations (6) and (7) can be adapted to that formalism. Now we shall answer 
this question. 

In the basis functions (2) of the GCM the angular momentum projection can in 
general be performed as given in Nagarajan and Lovas (1980). To avoid inessential 
complications, we now confine ourselves to clusters of zero spin and positive parity. 
In this case J = L, 7r = (-l)', where L is the relative orbital momentum, and 

where iL is a modified spherical Bessel function of the first kind (Abramowitz and 
Stegun 1964). With such a basis it is straightforward to calculate the normalisation 
and Hamiltonian kernels 

NJM*(S, S ' )  = (@JM=(S)I@.JM=(Sr)), HJM*(S, S') = (@,JM*(S)~HI@.JM"(S')) (23) 

provided (PA and QB as well as the internucleon force are simple enough. If the energy 
E, resulting from the diagonalisation is such that E, - E A  - EB > 0, E A  and EB being 
the cluster internal energies, the state is PB. By analogy with equation (lo), it is 
plausible that for values of the iritercluster separation r that are large enough for the 
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clusters not to overlap but are still smaller than SN, the function 

PB N rz + s2 
i = l  

behaves like 
PB 

U, (r) --FL(~J) +KLGL(~,~), 
where FL and GL are the regular and irregular Coulomb function and k,  = 

Let PL(knr) and gL(knr) and their first r-derivatives be zero at r = R o  and be close 
to FL(k,r) and GL(k,r), respectively, for r E (R, CO), where R is larger than RO and the 
nuclear interaction radius of the two clusters but smaller than SN. If we choose R o  
to be in the asymptotic region where the nuclear forces as well as the intercluster 
antisymmetrisation effects are negligible, and the Coulomb potential can be represen- 
ted by a two-body term, Vc, then uEB of (24) obeys 

[ (2p/f i2)(En - &A - &€J)11'2* 

for R o s r  s R, PB HouEB(r)=(E, - E A - E B ) u ,  ( r )  
where 

Since Ho is a two-body Hamiltonian, equation ( 9 )  and the similar equation for the 
cosine-like function apply to it if 9' and %' are replaced with gL and %L. Consequently, 

This formula is indeed simple to apply. 

6. Conclusions 

We have seen that the PBSM with GcM-like bases works remarkably well. The way 
it works is that the basis defines an expansion length A, and the GCM diagonalisation 
is tantamount to approximately solving the energy eigenvalue problem in a box of 
radius A. The wavefunction produced is a good approximation within the box to the 
exact one of the same energy. This makes it possible to use the PBSM to describe 
scattering events and resonances. The energy of the system is a result of the diagonali- 
sation, and the application of the method usually requires the scanning of a range of 
energy by a set of calculations with different bases. 

The resonances not only manifest themselves in the phase shift but also by 
producing inflexion points in the E(A)  curve. This lends itself to determining the 
resonance energy and width. Though for broad resonances these quantities are 
determined more reliably by finding the corresponding Gamow states, yet, especially 
if the resonance wavefunction is needed in subsequent calculations, it is convenient 
to resort to the PBSM. 

The application of the PBSM to scattering is supported by the fact that its K-matrix 
is equal to that resulting from the HulthCn variational method. This K-matrix coincides 
with the uncorrected K-matrix of the Kohn method at the PB energies. The HulthCn 
wavefunction becomes singular at the PB energies, and the PBSM may be viewed as 
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an eigenvalue problem, non-singular itself, to find these singularities. Although the 
HulthCn K-matrix is well defined at the PB energies, its definition in the HulthCn 
formalism involves an infinity-over-infinity type limit; thus its computation in this 
formalism is unstable around the PB energies (Nesbet 1968). In the PBSM this difficulty 
does not appear. In other versions of the Kohn-HulthCn approach there are further 
singularities appearing systematically. These are due to some coincidences in the 
choice of the square-integrable basis elements on the one hand and the incoming or 
outgoing waves on the other (Nesbet 1968). Since in the PB diagonalisation there are 
no incoming or outgoing waves, the PBSM is free of these singularities, too. 

The only slight inconvenience of the PBSM as compared with any proper scattering 
calculation is that we cannot specify the energy apriori. But we emphasise that in 
most practical cases in the field of low energy collisions of light nuclei, to which the 
GCM scattering model is tailored, the phase shift is needed in a range of energy. If 
so, the exact choice of the points at which the energy is discretised is, to some extent, 
arbitrary. But the PBSM helps to optimise this choice. With equidistant discretisation 
of the generator coordinate, the steeper S(E) is, the denser the resulting energy 
discretisation points are. The PB diagonalisation works like the discretisation involved 
in a Gaussian type quadrature (Reinhardt 1979). On the other hand, by changing 
the basis, any particular energy value can be approximated with arbitrary accuracy if 
needed. 

The only extra care to be taken when applying the PBSM concerns the Coulomb 
potential, which must be accurate throughout the long expansion region. 

The main advantage of the PBSM over conventional scattering calculations is that 
having a bound-state GCM code one can carry out scattering calculations without any 
change, and the extraction of the phase shift is also simple. It seems straightforward 
to generalise it to a multichannel problem, and there this advantage may be more 
important. 

The numerical examples shown may be of some interest apart from the GCM. They 
show how suitable the shifted Gaussian basis is when applied to PBSM. The approxima- 
tion involved in the use of such a basis is very transparent, because of the direct 
correspondence between the last basis element and the expansion length covered on 
the one hand, and between the density of the elements and the goodness of this 
coverage as well. Furthermore, since there is no reason for sticking to equidistant 
steps, it is easy to optimise the basis size. Hence the numerical difficulties caused by 
the use of almost linearly dependent bases never occur in practice. 
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